Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data

نویسندگان

  • Jiu Jimmy Jiao
  • Xiaotao Zhang
  • Yi Liu
  • Xingxing Kuang
  • Liping Zhu
چکیده

Groundwater plays a key role in maintaining the ecology and environment in the hyperarid Qaidam Basin (QB). Indirect evidence and data from sparse observation wells suggest that groundwater in the QB is increasing but there has been no regional assessment of the groundwater conditions in the entire basin because of its remoteness and the severity of the arid environment. Here we report changes in the spatial and temporal distribution of terrestrial water storage (TWS) in the northern Tibetan Plateau (NTP) using Gravity Recovery and Climate Experiment (GRACE) data. Our study confirms long-term (2003-2012) TWS increases in the NTP. Between 2003 and 2012 the TWS increased by 88.4 and 20.6 km3 in the NTP and the QB, respectively, which is 225% and 52% of the capacity of the Three Gorges Reservoir, respectively. Soil and water changes from the Global Land Data Assimilation System (GLDAS) were also used to identify groundwater storage in the TWS and to demonstrate a long-term increase in groundwater storage in the QB. We demonstrate that increases in groundwater, not lake water, are dominant in the QB, as observed by groundwater levels. Our study suggests that the TWS increase was likely caused by a regional increase in precipitation and a decrease in evaporation. Degradation of the permafrost increases the thickness of the active layers providing increased storage for infiltrated precipitation and snow and ice melt water, which may also contribute to the increased TWS. The huge increase of water storage in the NTP will have profound effects, not only on local ecology and environment, but also on global water storage and sea level changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet analysis of GRACE K-band range rate measurements related to Urmia Basin

Space-borne gravity data from Gravity Recovery and Climate Experiment (GRACE), as well as some other in situ and remotely sensed satellite data have been used to determine water storage changes in Lake Urmia Basin (Iran). As usual, the GRACE products are derived from precise inter-satellite range rate measurements converted to different formats such as spherical harmonic coefficients and equiva...

متن کامل

Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE)

[1] The satellite Gravity Recovery and Climate Experiment (GRACE) provides data describing monthly changes in the geoid, which are closely related to changes in vertically integrated terrestrial water storage. Unlike conventional point or gridded hydrologic measurements, such as those from rain gauges, stream gauges, rain radars, and radiometric satellite images, GRACE data are sets of Stokes c...

متن کامل

Statistical downscaling of GRACE gravity satellite-derived groundwater level data

With the continued threat from climate change, population growth and followed by increasing water demand, the need for hydrological data with high spatial resolution and proper time coverage to be felt more than ago. Therefore, having data such as terrestrial water storage changes and groundwater level changes with high resolution spatial helps to plan and make decisions for water resource mana...

متن کامل

Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau Evidence from stable isotopes

The timing history and driving mechanisms of C4 expansion and Tibetan uplift are hotly debated issues. Paleoenvironmental evidence from within the Tibetan Plateau is essential to help resolve these issues. Here we report results of stable C and O isotope analyses of tooth enamel samples from a variety of late Cenozoic mammals, including deer, giraffe, horse, rhino, and elephant, from the Qaidam...

متن کامل

Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau

Liquid water and ice are the dominant agents of erosion and sediment transport in most actively growing mountain belts. An exception is in the western Qaidam basin along the northeastern margin of the Tibetan Plateau, where wind and windblown sand have sculpted enormous yardang fields in actively folding sedimentary strata. Here, we present observations suggesting that since the late Pliocene, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015